SPNS-1106S

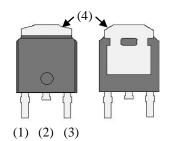
データシー

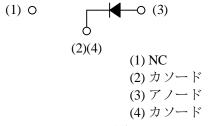
概要

SPNS-1106S は 600 V、10 A の高速整流ダイオー ドです。低VF特性と高速リカバリー特性を両立し、 損失の低減に貢献します。trr はライフタイム制御の 最適化により 100 ns を実現しました。高放熱パッ ケージの採用により、優れた放熱性を実現します。

特長

•	V _{RM} 600 V
•	$I_{F(AV)}10\ A$
	V _F 1.3 V
•	t _{rr} 100 ns
_	農子郊 Dh フリー (DoUC 対広)


- 端子部 Pb フリー (RoHS 対応)
- 難燃性 UL94V-0 相当
- フロー実装可能 (MSL 1)


アプリケーション

- PFC 回路
- フリーホイールダイオード (オフライン降圧/昇降圧コンバータなど)

パッケージ

TO252-2L

原寸大ではありません。

絶対最大定格

特記がない場合の条件は、 $T_A = 25$ °C です。

項目	記号	条件	定格	単位
ピーク非繰返し逆電圧	V_{RSM}		600	V
ピーク繰返し逆電圧	V_{RM}		600	V
平均順方向電流	I _{F(AV)}	図3、図4参照	10	A
サージ順方向電流	I_{FSM}	10 ms 正弦波、半波、単発	100	A
I²t 限界值	I^2t	$1 \text{ ms} \le t \le 10 \text{ ms}$	50	A^2s
接合部温度	T_{J}		−55~150	°C
保存温度	T_{STG}		−55~150	°C

電気的特性

特記がない場合の条件は、T_A = 25 ℃です。

14 HB. 64 . 30 E 2 STOTI 15:1 2 A	14 Halv 36 - 76 H 150 - 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15					
項目	記号	条件	Min.	Typ.	Max.	単位
順方向降下電圧	17	$T_J = 25 ^{\circ}\text{C}, I_F = 10 \text{A}$		_	1.3	V
	V_{F}	$T_J = 100 ^{\circ}\text{C}$, $I_F = 10 \text{A}$	_	1.0	_	V
逆方向漏れ電流	I_R	$V_R = V_{RM}$		_	100	μA
高温逆方向漏れ電流	$H \cdot I_R$	$V_R = V_{RM}$, $T_J = 150$ °C		_	10	mA
逆方向回復時間	t _{rr}	I _F = I _{RP} = 100 mA、 90%回復点、T _J = 25 °C			100	ns
熱抵抗 ⁽¹⁾	R _{th(J-C)}	(2)	_	_	5.0	°C/W

機械的特性

項目	条件	Min.	Тур.	Max.	単位
質量			0.32		g

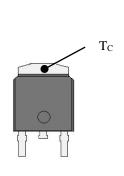


図1 ケース温度測定位置

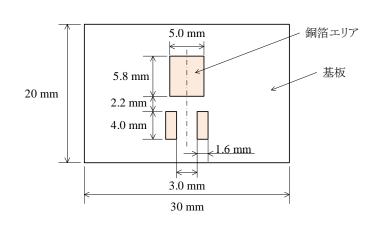


図2 ガラスエポキシ基板

⁽¹⁾ 接合部とケース間の熱抵抗

⁽²⁾ ガラスエポキシ基板実装時(基板サイズ:20 mm×30 mm、厚さ:1 mm、銅箔エリア:図2参照)

ディレーティング特性グラフ

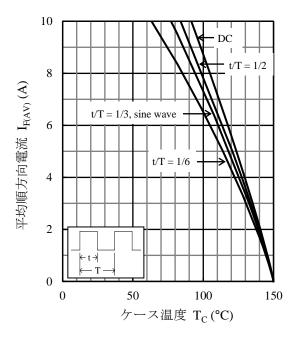


図 3 $I_{F(AV)} - T_C$ 特性 $(T_J = 150 \, {}^{\circ}C, V_R = 0 \, V)$

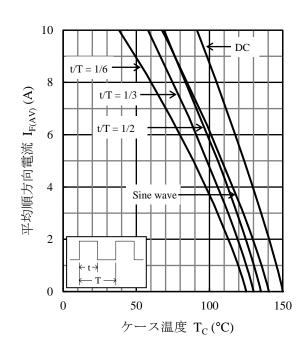


図 4 $I_{F(AV)} - T_C$ 特性 $(T_J = 150 \text{ °C}, V_R = 600 \text{ V})$

特性グラフ

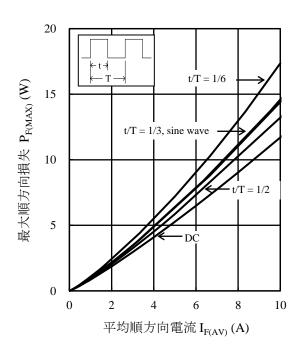


図 5 $P_{F(MAX)} - I_{F(AV)}$ 特性 $(T_J = 150 \text{ °C})$

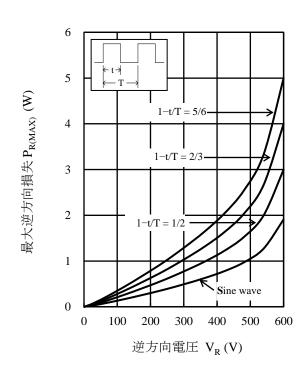


図 6 $P_{R(MAX)} - V_R$ 特性 $(T_J = 150 \, ^{\circ}C)$

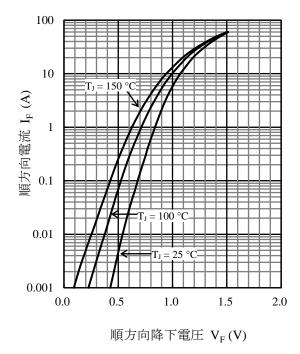


図 7 I_F – V_F 代表特性

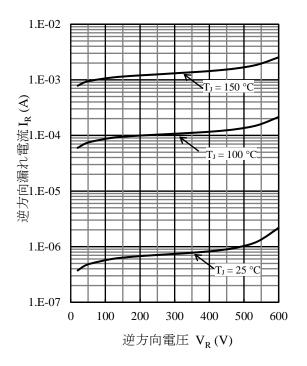
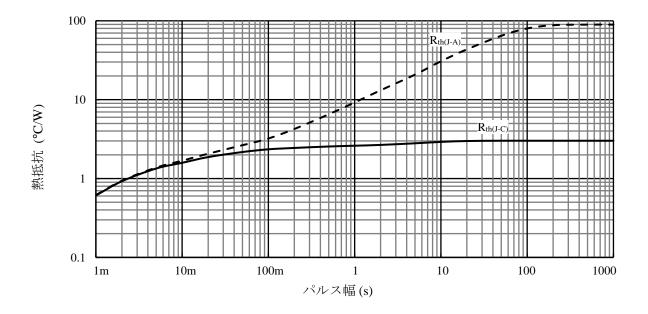
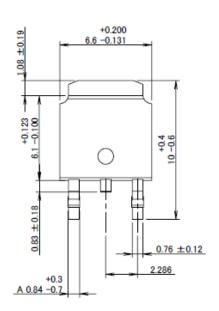
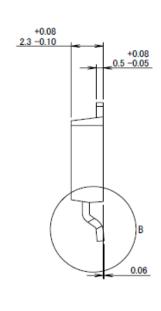
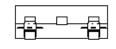
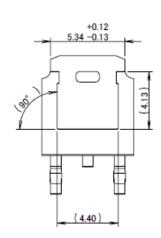
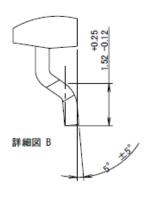


図 8 I_R - V_R 代表特性

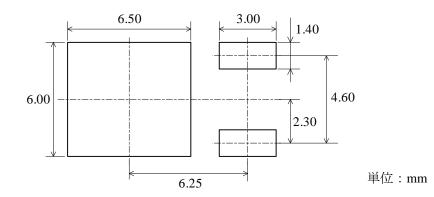

図 9 代表過渡熱抵抗特性


外形図


● TO252-2L パッケージ

備考:

- 単位:mm
- 寸法には樹脂バリ、突起、ゲートバリを含みません。
- 端子部 Pb フリー (RoHS 対応)
- MSL 1 (Moisture Sensitivity Level 1)
- はんだ付けをする場合は、以下の条件内で、できるだけ短時間で作業してください。


フロー: 260°C、10 s (1 回)

リフロー: 予備加熱 150 °C~200 °C ∕ 60 s~120 s

加熱処理 255 °C/30 s (260 °C ピーク、2 回)

はんだごて:350°C/3.5 s (1回)

• TO252-2L ランドパターン例

捺印仕様

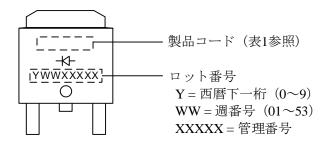


表1 製品コード

製品コード	製品名	
NS1106	SPNS-1106S	

注意書き

- 本書に記載している製品(以下、「本製品」という)のデータ、図、表、およびその他の情報(以下、「本情報」という)は、本書発行時点のものです。本情報は、改良などで予告なく変更することがあります。本製品を使用する際は、本情報が最新であることを弊社販売窓口に確認してください。
- ◆本製品は、一般電子機器(家電製品、事務機器、通信端末機器、計測機器など)の部品に使用されることを意図しております。本製品を使用する際は、納入仕様書に署名または記名押印のうえ、返却をお願いします。高い信頼性が要求される装置(輸送機器とその制御装置、交通信号制御装置、防災装置、防犯装置、各種安全装置など)に本製品を使用することを検討する際は、必ず事前にその使用の適否について弊社販売窓口へ相談いただき、納入仕様書に署名または記名押印のうえ、返却をお願いします。本製品は、極めて高い信頼性が要求される機器または装置(航空宇宙機器、原子力制御、その故障や誤動作が生命や人体に危害を及ぼす恐れのある医療機器(日本における法令でクラスⅢ以上)など)(以下「特定用途」という)に使用されることは意図されておりません。特定用途に本製品を使用したことでお客様または第三者に生じた損害などに関して、弊社は一切その責任を負いません。
- ◆ 本製品を使用するにあたり、本製品に他の製品や部材を組み合わせる際、あるいはこれらの製品に物理的、 化学的、その他の何らかの加工や処理を施す際は、使用者の責任においてそのリスクを必ず検討したうえ で行ってください。
- ●弊社は、品質や信頼性の向上に努めていますが、半導体製品は、ある確率で欠陥や故障が発生することは 避けられません。本製品が故障し、その結果として人身事故、火災事故、社会的な損害などが発生しない ように、故障発生率やディレーティングなどを考慮したうえで、使用者の責任において、本製品が使用さ れる装置やシステム上で、十分な安全設計および確認を含む予防措置を必ず行ってください。ディレーティングについては、納入仕様書および弊社ホームページを参照してください。
- ◆本製品は、耐放射線設計をしておりません。
- 本書に記載している回路定数、動作例、回路例、パターンレイアウト例、設計例、推奨例、本書に記載しているすべての情報、およびこれらに基づく評価結果などは、使用上の参考として示したものです。
- 本情報に起因する使用者または第三者のいかなる損害、および使用者または第三者の知的財産権を含む財産権とその他一切の権利の侵害問題について、弊社は一切その責任を負いません。
- ◆ 本情報を、文書による弊社の承諾なしに転記や複製をすることを禁じます。
- 本情報について、弊社の所有する知的財産権およびその他の権利の実施、使用または利用を許諾するものではありません。
- 使用者と弊社との間で別途文書による合意がない限り、弊社は、本製品の品質(商品性、および特定目的または特別環境に対する適合性を含む)ならびに本情報(正確性、有用性、および信頼性を含む)について、明示的か黙示的かを問わず、いかなる保証もしておりません。
- 本製品を使用する際は、特定の物質の含有や使用を規制する RoHS 指令など、適用される可能性がある環境関連法令を十分に調査したうえで、当該法令に適合するように使用してください。
- 本製品および本情報を、大量破壊兵器の開発を含む軍事用途やその他軍事利用の目的で使用しないでください。また、本製品および本情報を輸出または非居住者などに提供する際は、「米国輸出管理規則」や「外国為替及び外国貿易法」など、各国で適用される輸出管理法令などを遵守してください。
- 弊社物流網以外における本製品の落下などの輸送中のトラブルについて、弊社は一切その責任を負いません。
- ◆ 本書は、正確を期すために慎重に製作したものですが、本書に誤りがないことを保証するものではありません。万一、本情報の誤りや欠落に起因して、使用者に損害が生じた場合においても、弊社は一切その責任を負いません。
- ◆ 本製品を使用する際の一般的な使用上の注意は弊社ホームページを、特に注意する内容は納入仕様書を参照してください。
- 本書で使用されている個々の商標、商号に関する権利は、弊社を含むその他の原権利者に帰属します。

DSGN-CJZ-16003